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Background — Unified Memory

Developer View Today Developer View With
Unified Memory

-

System GPU Memory
Memory

Unified Memory

Benefits of Unified Memory:

 combines the advantages of explicit copies and zero-copy access
* eliminates manual management of data migration across host and device
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Background — Unified Memory

Deep Copy

Explicit Memory Management

char **data;
// allocate and initialize data on the CPU

char **d_data;

char **h_data = (char**)malloc(N*sizeof(char*));

for (int i = 0; 1 < N; i++) {
cudaMalloc(&h_data[i], N);
cudaMemcpy(h_data[i], data[i], N, ...);

}
cudaMalloc(&d_data, N*sizeof(char*));

cudaMemcpy (d_data, h_data, N*sizeof(char*), ...);

gpu_func<<<...>>>(d_data, N);

GPU code w/ Unified Memory

char **data;
// allocate and initialize data on the CPU

gpu_func<<<...>>>(data, N);

*http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
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I Background — Unified Memory

NVIDIA provides the cudaMemAdvise() API to advise the UM driver

cudaMemAdvise(const void *,
size_t,
enum cudaMemoryAdvise,
int)
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I Background — Unified Memory

NVIDIA provides the cudaMemAdvise() API to advise the UM driver

cudaMemAdvise(const void *, ———» data object
size_t,
enum cudaMemoryAdvise,———» cChoice of memory

int) 5 device advice
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Background — Unified Memory

Different choices for Unified Memory:

» Default: default on-demand page migration to accessing processor,
using the first-touch policy

" cudaMemAdviseSetReadMostly: Data will mostly be read and only
occasionally be written to

» cudaMemAdviseSetPreferredLocation: Set the preferred location for
the data as the specified device

» cudaMemAdviseSetAccessedBy: Data will be accessed by the specified
device, so prevent page faults as much as possible



Impact of different choices

Tablel: Code variants in the gaussian benchmark

4.0
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g e | B o —
1 baseline using discrete memory for all objects sob L |
2 modified to use unified memory for all objects L R e R
)
o
3 set array a with the ReadMostly advice § 20T
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4 set array a with the PreferredLocation advice on GPU
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5 set array a with the AccessedBy advice on GPU ostl L1
6 set array a with the PreferredLocation advice on CPU 0.0 L : . . . . .
1 2 3 4 5 6 7
7 set array a with the AccessedBy advice on CPU @
v
C rent code
Different choices of advice lead to 3.5 times speed up
or 200x degradation.
J
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I Problem

e Extremely challenging for programmers to decide when and
how to efficiently use UM for various kinds of applications.

* For a given memory object, there is a wide range of choices
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I Problem

e Extremely challenging for programmers to decide when and
how to efficiently use UM for various kinds of applications.

* For a given memory object, there is a wide range of choices

Whether and how to use unified memory?
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I Proposed Approach

* Use machine learning-based model to guide the memory advice
choice

* Offline training and online inference phases
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Offline Training

 Benchmarks with different advice; runtime metrics collection;
format to training dataset; build the classifier

Multiple Choices

[ | DiscreteMem UnifiedMemOnly EEH ReadMostly [ PreferredLocation AccessedBy
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benchmark_k it various choices
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Feature Engineering

Nvidia Nsight Compute command line profiler to fetch detailed
runtime performance metrics of the benchmarks

The default profiling phase contains 8 sections such as
* Compute Workload Analysis,
*  Memory Workload Analysis,
* Scheduler Statistics,
*  Warp State Statistics,
* |nstruction Statistics,
* Launch Statistics,
* Occupancy

Select important features using correlation and information gain
metrics

9/2/20
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Feature Engineering

Z
o

Feature Name

Elapsed Cycles

Duration

SM Active Cycles

Memory Throughput

Max Bandwidth

Avg. Execute Instructions Per Scheduler

Grid Size

Number of Threads

O ||| N[N WD =

Achieved Active Warps Per SM

Table 2: List of selected features in the model.
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Online Inference

Runtime
applications

reduce runtime
overhead, lower
latency

L
:@@

nsight fetch

sm_cycles.sum
gpu_time.avg
dram_bytes.avg
latex_cycles.avg
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modify benchmark

euler3d.cu

std::ifstream file(...);

file >> nel;

ne|r= BLOCI/ CI7C N* o
use unified memory

//float* h_areas = new float[nelr]; l

h_areas = (float*)xplacer_malloc(...);

cudaMemAdvise(h_areas, advice,...);

X\

add specific advice T

get proper choice
I

Decision tree model

>

process via model
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I Evaluation-Testbeds and benchmarks

* Multiple benchmarks from Rodinia on the Lassen
supercomputer at Livermore Computing.

* Each compute node: two IBM Power9 CPUs and four Tesla V100
GPUs

e 2,753 instances for training data

4 (2x6Xx6x6)
BFS 2 6 (2x6x6) 3
Gaussian 2 3 (2x6x6X6) 67
Hotspot 1 2 (2x6x6) 8
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Results - Accuracy

9/2/20

F-Measure (%)

REPTree

Bagging

J48

Random Tree

Random Forest

90 92 94 96 98

9

)

* Random Forest classifier achieves the best
performance with F-measure up to 96.3%

e Effective and optimal predictions for the
benchmarks
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Results — Reduced latency
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BFS has near 40% deduction at most; CFD has
average 8% deduction in execution latency.




Results — Reduced latency
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Hotspot benchmark has around 35% deduction;
Gaussian has at most 60% deduction in execution
latency.
J
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Conclusion & Future work

We study the hybrid use of both discrete and unified memory
APls on GPUs, with additional consideration for selecting different
memory advice choices.

A machine learning-based approach is proposed to guide optimal
use of GPU unified memory

Design code transformation to enable runtime adaptation of
CUDA programs leveraging online inference decisions

Future work:
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extend to evaluate the advice choices at a finer granularity
considering calling context.

employ runtime code generation and/or adaptation techniques to
automatically generate codes using suggested optimal memory
choices

evaluate the overhead for collecting training data and investigate

how to reduce the overhead
19



Thank you!
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I Problem

Whether and how to use unified memory?

Decide to use unified

Whether? :> memory or not
How? => Decide which advice

] should be used

9/2/20

27




